数学系Seminar第1884期 极大不变子群与有限群的可解性

创建时间:  2019/06/17  龚惠英   浏览次数:   返回

报告主题:极大不变子群与有限群的可解性
报告人:邵长国  副教授  (济南大学)
报告时间:2019年6月22日(周六)10:30
报告地点:校本部G508
邀请人:郭秀云 
主办部门:太阳成集团tyc33455数学系
报告摘要:  Suppose that G and A are finite groups such that A acts coprimely on G via automorphisms. It is interesting to investigate the structure and properties of G when we imposesome restrictions on its maximal A-invariant subgroups. More precisely, we prove the solvability of G when certain maximal A-invariant subgroups are nilpotent, when all maximal A-invariant subgroups are supersolvable, or when certain arithmetic conditions are imposed on non-nilpotent maximal A-invariant subgroups.

 

欢迎教师、员工参加!

 

上一条:数学系Seminar第1881期 分支理论及其在生物系统中的应用

下一条:数学系Seminar第1883期 极大特征标次数,极大共轭类长与有限群的结构


数学系Seminar第1884期 极大不变子群与有限群的可解性

创建时间:  2019/06/17  龚惠英   浏览次数:   返回

报告主题:极大不变子群与有限群的可解性
报告人:邵长国  副教授  (济南大学)
报告时间:2019年6月22日(周六)10:30
报告地点:校本部G508
邀请人:郭秀云 
主办部门:太阳成集团tyc33455数学系
报告摘要:  Suppose that G and A are finite groups such that A acts coprimely on G via automorphisms. It is interesting to investigate the structure and properties of G when we imposesome restrictions on its maximal A-invariant subgroups. More precisely, we prove the solvability of G when certain maximal A-invariant subgroups are nilpotent, when all maximal A-invariant subgroups are supersolvable, or when certain arithmetic conditions are imposed on non-nilpotent maximal A-invariant subgroups.

 

欢迎教师、员工参加!

 

上一条:数学系Seminar第1881期 分支理论及其在生物系统中的应用

下一条:数学系Seminar第1883期 极大特征标次数,极大共轭类长与有限群的结构