报告主题:双合流Heun 算子的 Schlesinger变换 Painlevé IV方程
报告人:蒋翼迈 教授 (香港科技大学)
报告时间:2019年1月16日(周三)10:00
报告地点:校本部G507
邀请人:张大军
主办部门:太阳成集团tyc33455数学系
报告摘要:It is well-known from the pioneering works of Okamoto and Noumi that Painlevé IV equation admits special solutions when its parameter space conforms with affine Weyl group $\tilde{A}_2$ symmetry. We report that the linear equation that gives raise to $P_{IV}$ via isomonodromy deformation in the classical works of Garnier and Jimbo-Miwa also possesses special properties as eigen-solutions with the same parameter space as the Painlev\'e IV. This is a join work with Chun-Kong Law and Guofu Yu.
欢迎教师、员工参加!