数学系Seminar第1745期 基于径向基函数的隐式曲面重构

创建时间:  2019/01/07  龚惠英   浏览次数:   返回

报告主题:基于径向基函数的隐式曲面重构
报告人:C.S. Chen   教授  (University of Southern Mississippi)
报告时间:2019年1月11日(周五)13:30
报告地点:校本部G507
邀请人:李新祥
主办部门:太阳成集团tyc33455数学系
报告摘要:We propose a partial differential equations-based algorithm for the 3D implicit surface reconstruction from a set of scattered cloud data. In the solution process, the method of approximate particular solutions with the IMQ radial basis function is employed for solving the modified Helmholtz or Poisson equation with a constant Dirichlet boundary condition. We also consider to repair the surfaces when a certain region of cloud data points are missing. The selection of several parameters is studied for the optimal recovery of the surfaces. Four examples are presented to validate the effectiveness of the proposed method.


欢迎教师、员工参加!

上一条:数学系Seminar第1746期 一个一般的非局部非线性薛定谔方程

下一条:物理学科Seminar第456讲 Sub-wavelength atom localization and microscopy


数学系Seminar第1745期 基于径向基函数的隐式曲面重构

创建时间:  2019/01/07  龚惠英   浏览次数:   返回

报告主题:基于径向基函数的隐式曲面重构
报告人:C.S. Chen   教授  (University of Southern Mississippi)
报告时间:2019年1月11日(周五)13:30
报告地点:校本部G507
邀请人:李新祥
主办部门:太阳成集团tyc33455数学系
报告摘要:We propose a partial differential equations-based algorithm for the 3D implicit surface reconstruction from a set of scattered cloud data. In the solution process, the method of approximate particular solutions with the IMQ radial basis function is employed for solving the modified Helmholtz or Poisson equation with a constant Dirichlet boundary condition. We also consider to repair the surfaces when a certain region of cloud data points are missing. The selection of several parameters is studied for the optimal recovery of the surfaces. Four examples are presented to validate the effectiveness of the proposed method.


欢迎教师、员工参加!

上一条:数学系Seminar第1746期 一个一般的非局部非线性薛定谔方程

下一条:物理学科Seminar第456讲 Sub-wavelength atom localization and microscopy