数学系Seminar第2067期 随机椭圆型偏微分方程最优控制问题无网格方法的先验误差估计

创建时间:  2020/12/18  龚惠英   浏览次数:   返回

    数学系 Seminar 第 2067 期

报告主题:随机椭圆型偏微分方程最优控制问题无网格方法的先验误差估计

报告人:陈艳萍 教授 (华南师范大学)

报告时间:2020年12月21日(周一) 10:30

会议形式:腾讯会议

会议 ID:909 550 171

会议密码:1221

主办部门:太阳成集团tyc33455数学系

报告摘要:In this work, we study the optimal control problems of stochastic elliptic equations with random field in its coefficients. The main contributions of this work are two aspects. Firstly, a meshless method coupled with the stochastic Galerkin method is investigated to approximate the control problems, which is competitive for high-dimensional random inputs. Secondly, a priori error estimates are derived for the solutions to the control problems. Some numerical tests are carried out to confirm the theoretical results and to demonstrate the efficiency of the proposed method.


欢迎教师、员工参加!

上一条:基于从纳米到人体传感体系的空气毒性实时监测

下一条:数学系Seminar第2066期 Nonlinear optimization techniques in wireless communications


数学系Seminar第2067期 随机椭圆型偏微分方程最优控制问题无网格方法的先验误差估计

创建时间:  2020/12/18  龚惠英   浏览次数:   返回

    数学系 Seminar 第 2067 期

报告主题:随机椭圆型偏微分方程最优控制问题无网格方法的先验误差估计

报告人:陈艳萍 教授 (华南师范大学)

报告时间:2020年12月21日(周一) 10:30

会议形式:腾讯会议

会议 ID:909 550 171

会议密码:1221

主办部门:太阳成集团tyc33455数学系

报告摘要:In this work, we study the optimal control problems of stochastic elliptic equations with random field in its coefficients. The main contributions of this work are two aspects. Firstly, a meshless method coupled with the stochastic Galerkin method is investigated to approximate the control problems, which is competitive for high-dimensional random inputs. Secondly, a priori error estimates are derived for the solutions to the control problems. Some numerical tests are carried out to confirm the theoretical results and to demonstrate the efficiency of the proposed method.


欢迎教师、员工参加!

上一条:基于从纳米到人体传感体系的空气毒性实时监测

下一条:数学系Seminar第2066期 Nonlinear optimization techniques in wireless communications