数学系Seminar第1876期 具低正则性初值的拟线性波动方程的整体解及其应用

创建时间:  2019/06/14  龚惠英   浏览次数:   返回

报告主题:具低正则性初值的拟线性波动方程的整体解及其应用
报告人:  查冬兵  副教授  (东华大学)
报告时间:2019年6月20日(周四)10:30
报告地点:校本部G507
邀请人:刘见礼 
主办部门:太阳成集团tyc33455数学系
报告摘要:We study the Cauchy problem for systems of 3-D quasilinear wave equations satisfying the null condition with low regularity initial data. In the radially symmetric case, we prove the global existence for every small data in $H^3\times H^2$ with a low weight. We also apply our result to 3-D nonlinear elastic waves. This is a joint work with Prof. Kunio Hidano.

 


欢迎教师、员工参加!

上一条:数学系Seminar第1877期 具大麦克斯韦场的massive Maxwell-Klein-Gordon方程的整体解

下一条:数学系Seminar第1880期 可压缩欧拉方程组的解析解


数学系Seminar第1876期 具低正则性初值的拟线性波动方程的整体解及其应用

创建时间:  2019/06/14  龚惠英   浏览次数:   返回

报告主题:具低正则性初值的拟线性波动方程的整体解及其应用
报告人:  查冬兵  副教授  (东华大学)
报告时间:2019年6月20日(周四)10:30
报告地点:校本部G507
邀请人:刘见礼 
主办部门:太阳成集团tyc33455数学系
报告摘要:We study the Cauchy problem for systems of 3-D quasilinear wave equations satisfying the null condition with low regularity initial data. In the radially symmetric case, we prove the global existence for every small data in $H^3\times H^2$ with a low weight. We also apply our result to 3-D nonlinear elastic waves. This is a joint work with Prof. Kunio Hidano.

 


欢迎教师、员工参加!

上一条:数学系Seminar第1877期 具大麦克斯韦场的massive Maxwell-Klein-Gordon方程的整体解

下一条:数学系Seminar第1880期 可压缩欧拉方程组的解析解