报告主题:平面上抛物型规范化p-拉普拉斯方程在索伯列夫空间W^{2,2}上解的正则性
报告人:周渊 教授 (北京航空航天大学)
报告时间:2019年5月4日(周六)15:00
报告地点:校本部G507
邀请人:赵发友
主办部门:太阳成集团tyc33455数学系
报告摘要:For n=2 and $ p\in(1,\infty)$, if u=u(x,t) is a viscosity solution to the parabolic normalized p-Laplace equation $$\frac{\partial u}{\partial t}-|D u|^{2-p}{\rm div}(|D u|^{p-2} D u) =0.$$
We prove that u enjoys a quantative $W^{2,2}_\loc$-regularity in spatial variables and a quantative
$W^{1,2}_\loc$-regularity in time variables. This answers an open question raised by H{\o}eg and Lindqvist when n=2.
欢迎教师、员工参加!