数学系Seminar第1762期 修正Camass-Holm方程的Lax可积性与尖峰孤子

创建时间:  2019/03/01  龚惠英   浏览次数:   返回

报告主题:修正Camass-Holm方程的Lax可积性与尖峰孤子
报告人:常向科  副研究员(中国科学院)
报告时间:2019年3月4日(周一)14:00-15:30
报告地点:校本部G507
邀请人:张大军
主办部门:太阳成集团tyc33455数学系
报告摘要:Peakons are special weak solutions of a class of nonlinear partial differential equations modelling non-linear phenomena such as the breakdown of regularity and the onset of shocks. In this talk, we give a complete construction of peakon solutions satisfying the modified Camassa-Holm (or called FORQ)  equation in the sense of distributions; our approach is based on solving certain inverse boundary value problem the solution of which hinges on a combination of classical techniques of analysis involving Stieltjes' continued fractions and multi-point Pad\'{e} approximations. We propose sufficient conditions needed to ensure the global existence of peakon solutions and analyze the large time asymptotic behaviour whose special features include a formation of pairs of peakons which share asymptotic speeds, as well as Toda-like sorting property.  

 

 

欢迎教师、员工参加!

上一条:数学系Seminar 第1758期 流式数据的鲁棒机器学习

下一条:数学系Seminar第1759期 Positive Scalar Curvature on Foliations


数学系Seminar第1762期 修正Camass-Holm方程的Lax可积性与尖峰孤子

创建时间:  2019/03/01  龚惠英   浏览次数:   返回

报告主题:修正Camass-Holm方程的Lax可积性与尖峰孤子
报告人:常向科  副研究员(中国科学院)
报告时间:2019年3月4日(周一)14:00-15:30
报告地点:校本部G507
邀请人:张大军
主办部门:太阳成集团tyc33455数学系
报告摘要:Peakons are special weak solutions of a class of nonlinear partial differential equations modelling non-linear phenomena such as the breakdown of regularity and the onset of shocks. In this talk, we give a complete construction of peakon solutions satisfying the modified Camassa-Holm (or called FORQ)  equation in the sense of distributions; our approach is based on solving certain inverse boundary value problem the solution of which hinges on a combination of classical techniques of analysis involving Stieltjes' continued fractions and multi-point Pad\'{e} approximations. We propose sufficient conditions needed to ensure the global existence of peakon solutions and analyze the large time asymptotic behaviour whose special features include a formation of pairs of peakons which share asymptotic speeds, as well as Toda-like sorting property.  

 

 

欢迎教师、员工参加!

上一条:数学系Seminar 第1758期 流式数据的鲁棒机器学习

下一条:数学系Seminar第1759期 Positive Scalar Curvature on Foliations