数学系Seminar第1747期 NLS Boussinesq 方程的高阶怪波解

创建时间:  2019/01/08  龚惠英   浏览次数:   返回

报告主题:NLS Boussinesq 方程的高阶怪波解
报告人:陈勇   教授  (华东师范大学)
报告时间:2019年1月5日(周六)9:30
报告地点:校本部乐乎楼海纳厅
邀请人:张大军
主办部门:太阳成集团tyc33455数学系
报告摘要:General high-order rogue waves of the nonlinear Schrödinger–Boussinesq equation are obtained by the KP-hierarchy reduction theory, and the N-order rogue waves are expressed with the determinants, whose entries are all algebraic forms, which is shown in the theorem. It is found that the fundamental first-order rogue waves can be classified into three patterns: four petal state, dark state, bright state by choosing different values of parameter α.


欢迎教师、员工参加!

上一条:数学系Seminar第1746期 一个一般的非局部非线性薛定谔方程

下一条:物理学科Seminar第457讲 Improving trapped ion quantum information processing with parametric amplification


数学系Seminar第1747期 NLS Boussinesq 方程的高阶怪波解

创建时间:  2019/01/08  龚惠英   浏览次数:   返回

报告主题:NLS Boussinesq 方程的高阶怪波解
报告人:陈勇   教授  (华东师范大学)
报告时间:2019年1月5日(周六)9:30
报告地点:校本部乐乎楼海纳厅
邀请人:张大军
主办部门:太阳成集团tyc33455数学系
报告摘要:General high-order rogue waves of the nonlinear Schrödinger–Boussinesq equation are obtained by the KP-hierarchy reduction theory, and the N-order rogue waves are expressed with the determinants, whose entries are all algebraic forms, which is shown in the theorem. It is found that the fundamental first-order rogue waves can be classified into three patterns: four petal state, dark state, bright state by choosing different values of parameter α.


欢迎教师、员工参加!

上一条:数学系Seminar第1746期 一个一般的非局部非线性薛定谔方程

下一条:物理学科Seminar第457讲 Improving trapped ion quantum information processing with parametric amplification