力学所SEMINAR 876 利用多尺度模型、传感器和数据同化对水污染物的动态跟踪和识别

创建时间:  2018/10/17  龚惠英   浏览次数:   返回

题  目:Dynamic Tracking and Identification of Contaminants in Water Bodies Using Mutliscale Models, Sensors,and Data Assimilation (利用多尺度模型、传感器和数据同化对水污染物的动态跟踪和识别)
报 告 人: Craig C. Douglas    教授 ( University of Wyoming   )
时  间:2018年10月22日(周一)14:00
地  点:延长校区应用数学和力学所东会议室
摘 要:We modify a well known mathematical model of fluid flow in water bodies in order to improve the computational accuracy over time. Our goal is to backtrack observed pollution clouds in order to find the one or more polluters. We use a set of remote sensors and data assimilation on much smaller grid within the large computational mesh. We solve a multiscale interpolation problem on a coarse time scale that provides updates to the predictions from our regular model. Over a sliding window of time, we see far greater accuracy. The technique is similar to solving inverse problems, but less expensive.
This is joint work over a period of years with Li Deng, Yalchin Efendiev, Richard Ewing, Raytcho Lazarov, and Robert Lodder

上一条:物理学科Seminar第440讲 Staggered fluxes for Bose Hubbard model in two-leg ladder configuration

下一条:物理学科Seminar第439讲 利用飞秒受激拉曼技术研究分子间激发态质子传递过程


力学所SEMINAR 876 利用多尺度模型、传感器和数据同化对水污染物的动态跟踪和识别

创建时间:  2018/10/17  龚惠英   浏览次数:   返回

题  目:Dynamic Tracking and Identification of Contaminants in Water Bodies Using Mutliscale Models, Sensors,and Data Assimilation (利用多尺度模型、传感器和数据同化对水污染物的动态跟踪和识别)
报 告 人: Craig C. Douglas    教授 ( University of Wyoming   )
时  间:2018年10月22日(周一)14:00
地  点:延长校区应用数学和力学所东会议室
摘 要:We modify a well known mathematical model of fluid flow in water bodies in order to improve the computational accuracy over time. Our goal is to backtrack observed pollution clouds in order to find the one or more polluters. We use a set of remote sensors and data assimilation on much smaller grid within the large computational mesh. We solve a multiscale interpolation problem on a coarse time scale that provides updates to the predictions from our regular model. Over a sliding window of time, we see far greater accuracy. The technique is similar to solving inverse problems, but less expensive.
This is joint work over a period of years with Li Deng, Yalchin Efendiev, Richard Ewing, Raytcho Lazarov, and Robert Lodder

上一条:物理学科Seminar第440讲 Staggered fluxes for Bose Hubbard model in two-leg ladder configuration

下一条:物理学科Seminar第439讲 利用飞秒受激拉曼技术研究分子间激发态质子传递过程