数学系Seminar第1619期 有限群的确定集

创建时间:  2018/05/22  龚惠英   浏览次数:   返回

报告主题:有限群的确定集

报告人:王登银 教授 (中国矿业大学)

报告时间:2018年 5月26日(周六)9:30

报告地点:校本部G507

邀请人:郭秀云

主办部门:太阳成集团tyc33455数学系

报告摘要:Let G be a group> a subset D of G is a determing set of G if every automorphism of G is uniquely determined by its action on D. The determing number of G, denoted by $\alpha(G)$, is the cardinality of a smallest set. A generating set of G is a subset such that every element of G can be expressed as the combination, under the group operation, of finitely many elements of the subset aned their inverses. The cardination of a smallest generating set of G, denote by $\gammea(G)$, is called the generating number of G. a group G is called a DEG_group if $\alpha(G)= \gammea(G)$.

We are going to discuss the determing number of and the generating number of a finite group G, and we also investigate the structure of DEG_groups.

欢迎教师、员工参加 !

上一条:数学系Seminar第1620期 有限群与不可约单项特征标的次数

下一条:数学系Seminar第1618期 有限群和同步半群


数学系Seminar第1619期 有限群的确定集

创建时间:  2018/05/22  龚惠英   浏览次数:   返回

报告主题:有限群的确定集

报告人:王登银 教授 (中国矿业大学)

报告时间:2018年 5月26日(周六)9:30

报告地点:校本部G507

邀请人:郭秀云

主办部门:太阳成集团tyc33455数学系

报告摘要:Let G be a group> a subset D of G is a determing set of G if every automorphism of G is uniquely determined by its action on D. The determing number of G, denoted by $\alpha(G)$, is the cardinality of a smallest set. A generating set of G is a subset such that every element of G can be expressed as the combination, under the group operation, of finitely many elements of the subset aned their inverses. The cardination of a smallest generating set of G, denote by $\gammea(G)$, is called the generating number of G. a group G is called a DEG_group if $\alpha(G)= \gammea(G)$.

We are going to discuss the determing number of and the generating number of a finite group G, and we also investigate the structure of DEG_groups.

欢迎教师、员工参加 !

上一条:数学系Seminar第1620期 有限群与不可约单项特征标的次数

下一条:数学系Seminar第1618期 有限群和同步半群